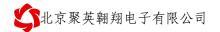


DAMO6DA 采集卡说明书 V1.1

北京聚英翱翔电子有限责任公司 2015 年 12 月


官网: www. juyingele. com 联系电话: 010-82899827/1-803

官网: www.juyingele.com

目 录

Ħ	录	2
-,	产品特点	. 1
_,	产品功能	. 1
三、	产品选型	. 1
四、	主要参数	. 1
五、	接口说明	. 1
六、	通讯接线说明	. 1
	1、RS232 接线方式	. 1
	2、RS485 级联接线方式	2
七、	输出接线	. 2
八、	测试软件说明	2
	1、软件下载	. 2
	2、软件界面	. 3
	3、通讯测试	. 3
	4、模拟量数据输入说明	4
九、	参数及工作模式配置	5
	1、设备地址	
	2、波特率的读取与设置	
十、	开发资料说明	. 6
	1、通讯协议说明	
	2、Modbus 寄存器说明	
	3、指令生成说明	
	4、指令列表	
	5、指令详解	
	·、常见问题与解决方法	
+=	1、技术支持联系方式	10

一、产品特点

- DC12-30V 宽压供电;
- RS485 通讯隔离;
- 通讯接口支持 RS232、RS485;
- 支持标准 modbus 协议,同时支持 ASCII/RTU 格式。

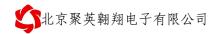
二、产品功能

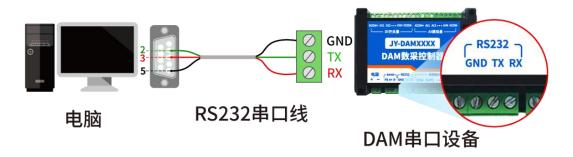
- 6路模拟量输出;
- 支持 5 位寻址地址;
- 支持波特率: 1200,2400,4800,9600,19200,38400,57600,115200。

三、产品选型

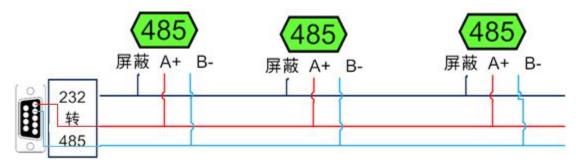
型号	modbus	RS232	RS485	USB	WiFi	DA	AD
DAMO6DA-RS232+485	•					6	

四、主要参数


参数	说明
数据接口	RS485、RS232
额定电压	DC 12-30V
电源指示	1路红色 LED 指示(不通信时常亮,通信时闪烁)
通讯指示	与电源指示灯共用
输出指示	与电源指示灯共用
温度范围	工业级,-40℃~85℃
尺寸	115*95*41mm
重量	300g
默认通讯格式	9600, n, 8, 1
波特率	1200,2400,4800,9600,19200,38400,57600,115200
软件支持	配套配置软件、控制软件; 支持各家组态软件; 支持 Labviewd 等


五、接口说明

六、通讯接线说明


1、RS232 接线方式

RS232 接线为标准 DB9 母头接口,为直连线。

2、RS485级联接线方式

电脑自带的串口一般是 RS232,需要配 232-485 转换器(工业环境建议使用有源带隔离的转换器),转换后 RS485 为 A、B 两线,A 接板上 A 端子,B 接板上 B 端子,485 屏蔽可以接 GND。若设备比较多建议采用双绞屏蔽线,采用链型网络结构。

七、输出接线

DA1-DA10 为信号输出正, GND 为信号输出地。

设置输出值与实际值之间的关系是:输出值=实际值*100,如设置输出 4ma,写写入 400。

八、测试软件说明

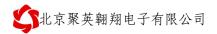
官网: www.juyingele.com

1、软件下载

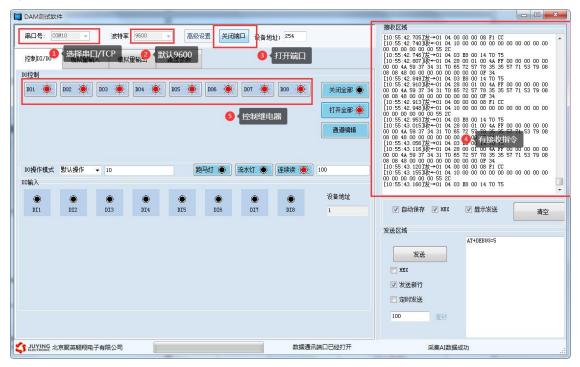
https://www.juyingele.com/download/JYDAMSoftware.zip(软件视频教程连接)

2、软件界面

软件功能


- 继电器状态查询
- 继电器独立控制
- 模拟量读取
- 开关量状态查询
- 调试信息查询
- 工作模式的更改
- 偏移地址的设定
- 继电器整体控制

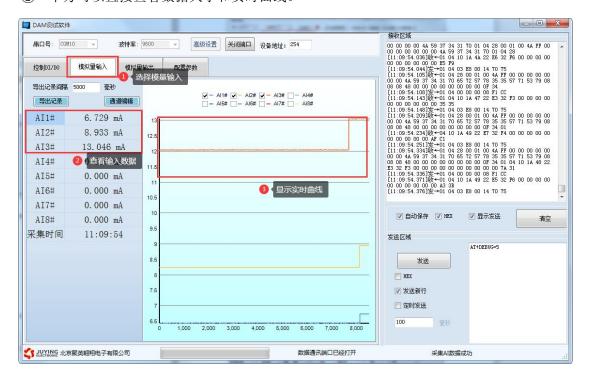
3、通讯测试

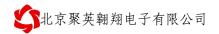

- ① 选择设备当前串口号(IP地址填写IP);
- ② 选择默认波特率 9600;

官网: www. juyingele. com

③ 打开端口:

④ 右侧有接收指令,可控制继电器即通讯成功。




4、模拟量数据输入说明

① 选择模拟量输入;

官网: www.juyingele.com

② 下方可以直接查看数据大小和实时曲线。

九、参数及工作模式配置

1、设备地址

1.1、设备地址的介绍

DAM 系列设备地址默认为 1,使用广播地址为 254 进行通讯,*用 0 无法通讯*。 **设备地址=拨码开关地址+偏移地址。**

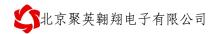
注意: 本设备没有拨码开关的设备,所以设备地址=偏移地址。

1.2、设备地址的读取

点击软件上方"读取地址"即可读到设备的当前地址。

1.3、偏移地址的设定与读取

点击 DAM 调试软件下方偏移地址后边的"读取"或"设置"来对设备的偏移地址进行读取或设置。



2、波特率的读取与设置

官网: www.juyingele.com

点击下方波特率设置栏的"读取"和"设置"就可以分别读取和设置波特率和地址,操作后需要重启设备和修改电脑串口设置。

十、开发资料说明

1、通讯协议说明

本产品支持标准 modbus 指令,有关详细的指令生成与解析方式,可根据本文中的寄存器表结合参考《MODBUS 协议中文版》 即可。

2、Modbus 寄存器说明

本控制卡主要为模拟输入寄存器和光耦输入寄存器,主要支持以下指令码:3、4

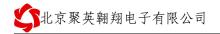
指令码	含义
4	读输入状态
3	写模拟量数值

寄存器名称		寄存器地址	说明
模拟量输出			
输出1	模拟量输出	4x0001	第一路输出
输出 2	3号指令	4x0002	第二路输出
输出 3		4x0003	第三路输出
输出 4		4x0004	第四路输出
输出 5		4x0005	第五路输出
输出 6		4x0006	第六路输出
输出7		4x0007	第七路输出
输出 8		4x0008	第八路输出
输出 9		4x0009	第九路输出
输出 10		4x0010	第十路输出
配置参数			
通信波特率	保持寄存器	4x1001	见下表波特率数值对应表,默认为0,
			支持 0-5, 该寄存器同时决定 RS232 和
			RS485 的通信波特率
备用		4x1002	备用,用户不可写入任何值。
偏移地址		4x1003	设备地址=偏移地址+拨码开关地址
工作模式		4x1004	用户可以使用,存储用户数据
延迟时间		4x1005	用户可以使用,存储用户数据

备注:

①: Modbus 设备指令支持下列 Modbus 地址:

00001 至 09999 是离散输出(线圈)


10001 至 19999 是离散输入(触点)

30001 至 39999 是输入寄存器(通常是模拟量输入)

40001 至 49999 是保持寄存器(通常存储设备配置信息)

采用 5 位码格式,第一个字符决定寄存器类型,其余 4 个字符代表地址。地址 1 从 0 开始,如 00001 对应 0000。

②: 波特率数值对应表

数值	波特率
0	38400
1	2400
2	4800
3	9600
4	19200
5	38400

③: 继电器状态,通过 30002 地址可以查询,也可以通过 00001---00002 地址来查询,但控制只能使用 00001---00002 地址。

30002 地址数据长度为 16bit。最多可表示 16 个继电器。

对应结果如下:

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
继电器	8	7	6	5	4	3	2	1	16	15	14	13	12	11	10	9
位置																

即 寄存器 30009 数据 的 bit8 与寄存器 00001 的数据一样。

同理: 光耦输入也是如此。寄存器 30003 的 bit8、bit9 与寄存器 10001、10002 都对应到指定的硬件上。

寄存器地址按照 PLC 命名规则,真实地址为去掉最高位,然后减一。

参考资料: http://hi.baidu.com/anyili001/item/573454e6539f60afc10d75c9

3、指令生成说明

指令可通过"聚英翱翔 DAM 调试软件", 勾选调试信息来获取。

指令生成说明:对于下表中没有的指令,用户可以自己根据 modbus 协议生成,对于继电器线圈的读写,实际就是对 modbus 寄存器中的线圈寄存器的读写,上文中已经说明了继电器寄存器的地址,用户只需生成对寄存器操作的读写指令即可。例如读或者写继电器 1 的状态,实际上是对继电器 1 对应的线圈寄存器 00001 的读写操作。

4、指令列表

情景	RTU 格式(16 进制发送)
查询第1路模拟量	FE0300000019005
返回信息	FE 03 02 00 00 AC 50
查询第2路模拟量	FE0300010001C1C5
查询第3路模拟量	FE030002000131C5
查询第4路模拟量	FE03000300016005
查询第5路模拟量	FE0300040001D1C4
查询第6路模拟量	FE03000500018004
查询第7路模拟量	FE03000600017004
查询第8路模拟量	FE030007000121C4
查询第9路模拟量	FE030008000111C4
查询第10路模拟量	FE03000900014007

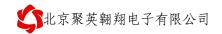
5、指令详解

1、查询第一路模拟量输出 FE 03 00 00 00 01 90 05

字段	含义	备注
FE	设备地址	
03	03 指令	查询输入寄存器指令
00 00	起始地址	要查询的第一路模拟量寄存器地址
00 01	查询数量	要查询的模拟量数量
90 05	CRC16	

模拟返回信息:

FE 03 02 00 00 AC 50


字段	含义	备注
FE	设备地址	
03	03 指令	返回指令:如果查询错误,返回 0x82
02	字节数	返回状态信息的所有字节数。1+(n-1)/8
00 00	查询的 AD	0x0227, 即十进制 551, 为查询的模拟量 AD
	字	字的值
AC 50	CRC16	

2、设置第一路模拟量输出

设置输出值与实际值的关系:输出值=实际值*100

FE 06 00 00 01 90 9C 39

字段 含义 备注

FE	设备地址	
06	06 指令	写输入寄存器指令
00 00	地址	要查询的第一路模拟量寄存器地址
01 90	设置值	设置值 16 进制 0x0190 = 400(4ma)
9C 39	CRC16	

模拟返回信息:

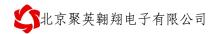
FE 06 00 00 01 90 9C 39

字段	含义	备注
FE	设备地址	
06	06 指令	写输入寄存器指令
00 00	地址	要查询的第一路模拟量寄存器地址
01 90	设置值	设置值 16 进制 0x0190 = 400
9C 39	CRC16	

3、设置多路模拟量输出

字段	含义	备注
FE	设备地址	
10	10 指令	写多路输出寄存器指令
00 00	地址	输出的第一路模拟量寄存器地址
00 0A	输出数量	模拟量输出的数量
14	字节数	设置输出字节数
00 00	模拟量输出	第1路模拟量输出
	值	
00 00		第10路模拟量输出
73 15	CRC16	校验位

模拟返回信息:


FE 10 00 00 00 0A 54 01

字段	含义	备注
FE	设备地址	
10	10 指令	写多路输出寄存器指令
00 00	地址	要查询的第一路模拟量寄存器地址
00 0A	输出数量	模拟量输出的数量
54 01	CRC16	

十一、常见问题与解决方法

1.采集板卡供电后使用 232 接口无法建立通信,无法控制

首先测试不同波特率是否可以控制,485接口注意 A+、B-线以及屏蔽线,屏蔽线不是必须,但在通信误码率大的情况下必须接上,即便距离很近也可能出现此类情况。

2.485 总线, 挂载了大于1个的设备, 如: 我以广播地址254 发送继电器1 吸和, 但并不是所有模块的继电器1 吸和。

广播地址在总线上只有一个设备时可以使用,大于1个设备时请以拨码开关区分地址来控制,否则会因为模块在通信数据的判断不同步上导致指令无法正确执行。

十二、技术支持联系方式

联系电话: 010-82899827/1-803

联系 QQ: 4008128121

官网: www.juyingele.com