首页
搜索
历史搜索
搜索发现

霍尔式传感器的工作原理

2023-03-30 10:07:15| 来源:聚英电子| | 0

  霍尔式传感器在人们的生活中发挥了很大的作用,那么霍尔式传感器的工作原理是什么呢?它是怎么实现刹量的呢?聚英电子来介绍一下霍尔式传感器的工作原理,测量误差补偿是如何实现的。

  霍尔式传感器,利用半导体材料的霍尔效应进行刻星的一种磁敏式传感器。它可以直接测随磁场和做位移量,应用于电池测量、压力、加速度、振动等方面的测量领域。目前霍尔传感器已从分立元件发展到集成电路的阶段,正越来越受人们的重视,应用日益广泛。

霍尔式传感器

  一、电流与电压

  电荷可以激发电场,并对置于电场中的其他电荷产生电场力的作用,类似于地球周围的重力场可以对人产生重力作用。电荷量越大,电场越强,相同距离间的电场力作用就越明显,这个作用就是电压。

  也就是说,电压越大,表明电场越强,对电荷的作用力就越大。又因为,导体中存在大量自由电子(负电荷),所以,若给导体施加电压,就相当于在导体内部施加了个强电场,在这个强电场的作用力下,导体内部的自由电子因受到力的作用发生定向移动,这就是电流。且电压越大,电场越强,受到电场力发生移动的电荷(自由电子)就越多,电流就越大。换言之,电流一方面表明了电荷的定向移动,一方面又表示了移动的电荷量(单位时间通过导体截面的电荷量)。

  另外,电场方向为电压正极指向电压负极,或者说,电场方向为正电荷指向负电荷。由于电荷之间同性相斥,异性相吸,若正电荷处于电场中,就会受到电场力从电压正极跑向负极,这个跑向就是电流正方向,所以把电流从电压正极流向负极的这种方向关系称为关联参考方向。

  二、洛伦兹力

  洛伦兹力属于电磁力的一种。电磁力包括宏观上的安培力以及微观上的洛伦兹力。所谓电磁力,是指通电导体或运动电荷处于磁场中时,会受到磁场的作用力。因为通电导体本质是其内部电荷的定向移动,大量运动电荷,每个运动电荷都受到洛伦兹力的作用,在宏观上就表现为导体所受到的安培力(各个洛伦兹力的合力)。

  洛伦兹力的方向判断用左手定则,磁力线从掌心穿过,四指指向正电荷的运动方向(即电流正方向),拇指指向即为洛伦兹力方向,在这个力的作用下,正电荷的运动将发生偏转。

  若运动电荷带负电,四指指向将相反(因为负电荷的运动方向与电流正方向相反),根据左手定则,可以发现,同一磁场中,正、负电荷所受到的洛伦兹力方向相反。毫无疑问,磁场越强,运动电荷所受到的洛伦兹力就越大。

  已知电压电流与洛伦兹力的含义,那么我们对霍尔效应的理解就会显得尤为简单。

  三、霍尔效应

  霍尔效应由物理学家霍尔发现,简单来说就是给半导体通电并将其置于磁场中,该半导体将会产生另一个电压。给一半导体通电,将有电流流过,电流由自由电子定向移动形成。

  将磁体靠近通电的半导体,此时半导体处于磁场中。显然,半导体中定向移动的自由电子就会受到洛伦兹力的作用发生偏转。根据左手定则,磁力线从上往下穿过半导体,电子运动方向为四指反方向,则拇指为电子偏转方向。

  另外,在半导体中,电荷除了自由电子外,还有失去电子的空穴(或者说离子,带正电),带有等量异性电荷,分别处于半导体两侧。由于异性电荷分别聚集在半导体两侧,这就会在半导体内部形成内电场,即正负电荷之间的空间存在电场。

  电场的建立,相当于有了电压的存在,此时用电压表测半导体两侧,必然会有具体电压值,这个电压被称为霍尔电压或霍尔电势差。

  结合上文所言的洛伦兹力,磁场越强,所能束缚的运动电荷就越多,那么半导体两侧聚集的异性电荷就越多,所建立的内电场就越强,即两侧的电压越大。

霍尔式传感器

  霍尔式传感器的常见的产生误差的因素有:半号体本身应有的特性、半导体制造工艺水平、环境温度变化、霍尔传感器的安装是否合理等,测量误差一般表现为零误差和温度误差。

  零位误差及其补偿

  当霍尔元件的激励电流不再为零时,若所处位置的磁感应强度为零。则霍尔电势仍应为零,但实际中若不为零,则此时空载的霍尔电势称为零位误差。

  温度误差及补偿

  由于半导体材料的电阻率、迁移率和载流子浓度都随温度而变化,用此材料制成的霍尔元件的性能参数必然随温度而变化,致使霍尔电势变化,产生温度误差。

  为了减小温度误差,除选用温度系数0较小的材料,还可以来取一些恒温措施。或者采用恒流源或恒压源配合补偿电阻供电,这样可以减小元件内阻随温度变化而引起的控制电流变化。


联系销售
销售王经理微信 销售王经理
微信公众号 微信公众号
服务热线
400-6688-400